تبلیغات
ریاضیات - حد و پیوستگی
ریاضیات
"ریاضیات عبارت است از اثبات بدیهی ترین چیز به نابدیهی ترین روش ممکن"
نوشته شده در تاریخ سه شنبه 22 تیر 1389 توسط علی .ک
در ریاضیات، مفهوم حد، برای بیان رفتار یک تابع مورد استفاده قرار می گیرد و به بررسی این رفتار در نقاط روی صفحه و یا در بی نهایت می پردازد. حد در حساب دیفرانسیل و انتگرال و نیز در آنالیز ریاضی برای تعریف مشتق و نیز مفهوم پیوستگی مورد استفاده قرار می گیرد.
ریاضیدانها حتی قبل از اینکه بتوانند مفهوم دقیق حد را بیان کنند، در مورد آن بحث می کرده اند. یونانیان باستان درکی از مفهوم حد داشته اند. مثلاً ارشمیدس مقدار تقریبی را با استفاده از محیط چند ضلعیهای منتظم محاط در دایره به شعاع واحد، وقتی که تعداد اضلاع بدون کران افزایش می یابد به دست می آورد. در قرون وسطی نیز تا زمان رنسانس انواع مفاهیم حد برای بدست آوردن مساحت شکلهای مختلف به کار رفته است.

نیوتن و لایب نیتس در قرن هفدهم، درک شهودی خوبی از حد داشته و حتی حدهای پیچیده ای را نیز محاسبه کرده اند. اما نه آنها و نه در آن قرن، دانشمندان دیگر تعریف دقیقی از حد را ارائه نکرده اند.

یک قرن پس از پیشرفت حساب دیفرانسیل و انتگرال، آلمبرت در سال 1754 عنوان کرد که پایه منطقی مباحث این رشته از دانش بشری مفهوم حداست. کوشی در اوایل قرن نوزدهم حساب دیفرانسیل و انتگرال را به شکلی شبیه آنچه در حال حاضر می خوانیم ارائه داد:

"وقتی که مقادیر متوالی به یک متغیر نسبت داده می شود، بی نهایت به عدد ثابتی نزدیک شوند، به طوری که اختلاف آنها از مقدار ثابت به هر اندازه کوچک قابل انتخاب باشد، این مقدار ثابت را حد همه مقادیر متغیر می گویند."

تعریف حد

مقدار ثابت a حد متغیر x است هرگاه به ازای هر عدد مثبت کوچک که قبلا به طور مشخص تعیین گردیده است بتوان مقداری از متغیر x را چنان تعیین کرد که جمیع مقادیر در نامساوی صدق کند.
اگر a حد متغیر x باشد گوییم متغیر x به سوی حد a میل می‌کند و بر حسب قرداد آن را به یکی از صورتهای زیر می‌نویسیم:



تعبیر هندسی حد

مقدار ثابت a حد متغیر x است (یعنی L=a) هرگاه برای هر همسایگی کوچک که مرکز آن a و شعاع آن و است و این همسایگی قبلا بطور غیر مشخصی تعیین گردیده است مقداری از x را چنان تعیین نمود که جمیع نقاط متناظر به مقادیر بعدی متغیر در داخل این فاصله قرار گیرند.

خواص حد

  • مقدار ثابت c متغیری است که جمیع مقادیر آن بر یکدیگر منطبق است یعنی x=c. واضح است که حد مقدار ثابت c برابر c است زیرا همواره برای هر عدد مثبت و دلخواه نامساوی زیر برقرار است:

  • از تعریف حد نتیجه می‌گردد که متغیر نمی‌تواند دارای دو حد باشد زیرا اگر و باشد در این صورت متغیر x باید در یک زمان در دو نامساوی و صدق کند. ولی اگر باشد خواهیم دید که این امر امکان ندارد.
  • نباید تصور نمود که هر متغیر دارای حد می‌باشد.

حد یک تابع

فرض می‌کنیم تابع در همسایگی معینی از نقطه a و یا در برخی نقاط این همسایگی معین باشد. اگر x به سوی a میل کند تابع به سوی حد b میل خواهد نمود، هرگاه به ازای هر عدد مثبت کوچک بتوان عدد مثبتی مانند غیر از a یافت به قسمی که جمیع مقادیر x که در نامساوی صدق می‌کنند در نامساوی نیز صدق کنند.
اگر b حد تابع هنگامیکه باشد در اینصورت خواهیم نوشت:

قضایایی درباره حد

  • اگر m و b و a سه عدد دلخواه باشند و ، آنگاه


  • قضیه حد مجموع: حد مجموع دو تابع برابر مجموع حدهای آن دوتابع است، مشروط بر اینکه حدها وجود داشته باشند.
  • قضیه حد حاصلضرب: حد حاصلضرب دو تابع مساوی حاصلضرب حدهای آنهاست، مشروط بر اینکه حدها وجود داشته باشند.
  • قضیه حد تفاضل: حد تفاضل دو تابع مساوی تفاضل حدهای آن دو تابع است، مشروط بر اینکه حدها وجود داشته باشد.
  • حد حاصلضرب یک عدد ثابت در یک تابع ، برابر است با حاصلضرب آن عدد ثابت در حد آن تابع.
  • حد خارج قسمت دو تابع ، خارج قسمت حدهای آنهاست به شرطی که مخرج به صفر نگراید.

این ویژگیها برای حدهای راست و برای حدهای چپ نیز صادق است.

  • اگر و ، آنگاه:

  • اگر f و g به ازای جمیع مقادیر x در نامساوی صدق کنند. اگر f و g در x=a حد داشته باشند، آنگاه


  • قضیه حد تابع مرکب: اگر تابع g در دارای حد a و تابع f در a دارای حد A باشد. به علاوه ، اگر در همسایگی از داشته باشیم ، آنگاه تابع مرکب fog در دارای حد A است.

حد در بی‌نهایت

  • تابع f و عدد L مفروض‌اند. اگر باشد، آنگاه L را حد تابع f ، وقتی x به سمت بی‌نهایت مثبت میل می‌کند، می‌گویند.
  • تابع f و عدد L مفروض‌اند. اگر باشد، آنگاه ، L را حد تابع f ، وقتی x به سمت بی‌نهایت منفی میل می کند، می‌گویند.
  • تابع f و عدد L مفروض‌اند. اگر باشد، آنگاه ، L را حد تابع f ، وقتی x به سمت بی‌نهایت میل می‌کند، می‌گویند.

حدهایی که بی‌نهایت می‌شوند

  • برای تابع مفروض f ، اگر باشد، آنگاه ، حد تابع f را ، وقتی x به سمت a میل کند، بی‌نهایت مثبت می‌نامیم.
در این حالت نمی‌توان گفت f در x=a حد دارد، زیرا مثبت بی‌نهایت یک عدد حقیقی نیست.
  • برای تابع مفروض f ، اگر باشد، آنگاه ، حد تابع f را ، وقتی x به سمت a میل کند، بی‌نهایت منفی می‌نامیم. در این حالت نمی‌توان گفت f در x=a حد دارد، زیرا منفی بی‌نهایت یک عدد حقیقی نیست.

تعریف پیوستگی

تابع f را در x=a پیوسته می‌نامیم هرگاه سه شرط زیر برقرار باشد:

  1. تابع f در نقطه a وجود داشته باشد، یعنی a تعلق به دامنه f باشد.
  2. حد تابع در نقطه a وجود داشته باشد.
  3. حد تابع در نقطه x=a برابر باشد.
اگر هر یک از سه شرط بالا در x=a برقرار نباشد، f را در a ناپیوسته می‌‌نامیم. در این صورت a را یک نقطه ناپیوستگی f نیز می‌خوانیم.

مفهوم پیوستگی

تابعی مانند که بتوان نمودار آن را در هر بازه‌ای از دامنه‌اش با حرکت پیوسته نوک قلم رسم کرد، مثالی از یک تابع پیوسته است. ارتفاع نمودار این تابع در طول بازه به طور پیوسته با x تغییر می‌کند. در هر نقطه داخلی دامنه تابع ، مانند c در شکل زیر ، مقدار تابع ، ، حد مقادیر تابع در هر یک از دو طرف است؛ یعنی

مقدار تابع در هر نقطه انتهایی نیز ، حد مقادیر تابع در نزدیکی آن است.

در نقطه انتهایی چپ a

در نقطه انتهایی راست b

پیوستگی در مورد اعمال جبری

اگر توابع f و g در x=a پیوسته باشند، آنگاه:
  1. حاصلجمع دو تابع f و g در x=a پیوسته است.
  2. تفاضل دو تابع f و g در x=a پیوسته است.
  3. ، به ازای هر عدد ثابت c ، در x=a پیوسته است.
  4. حاصلضرب دو تابع f و g در x=a پیوسته است.
  5. خارج قسمت دو تابع یعنی به شرطی که در x=a پیوسته است.
  6. قدرمطلق هر یک از این دو تابع در x=a پیوسته است.

ویژگیهای مهم پیوستگی

  • یک چند جمله‌ای از x همواره در تمام نقاط اعداد حقیقی پیوسته خواهد بود.
  • هر تابع گویا در تمام نقاط قلمرو خود پیوسته خواهد بود.
  • اگر تابع f در a پیوسته باشد، آنگاه ریشه n ام برای همه اعداد صحیح و مثبت n در x=a پیوسته خواهد بود.
  • اگر تابع g در a و تابع f در پیوسته باشد، آنگاه ترکیب دو تابع f و g در a پیوسته خواهد بود.

پیوستگی روی بازه باز و بسته

  • اگر تابع f در همه نقاط یک بازه پیوسته باشد، f را روی آن بازه باز پیوسته می‌نامیم. اگر fحداقل در یک نقطه از بازه باز پیوسته نباشد، f را روی این بازه باز ناپیوسته می‌نامیم.
  • تابع f را روی بازه بسته پیوسته می‌نامیم، اگر در سه شرط زیر صدق کند:
  1. f روی بازه باز پیوسته باشد.
  2. حد تابع در نقطه برابر باشد.
  3. حد تابع در نقطه برابر باشد.
اگر هر یک از سه شرط بالا برقرار نباشد، f را روی بازه بسته ناپیوسته می‌نامیم.


درباره وبلاگ

قصد این وبلاگ فقط وفقط کمک به علاقه مندان به درس شیرین ریاضی است .
به امید موفقیت روز افزون شما عزیزان
دوستانی که سوالی دارند،می توانند ایمیل بزنن...لطفا در نظرات سوال نکنید.
آخرین مطالب
آرشیو مطالب
نویسندگان
پیوند ها
آمار سایت
بازدیدهای امروز : نفر
بازدیدهای دیروز : نفر
كل بازدیدها : نفر
بازدید این ماه : نفر
بازدید ماه قبل : نفر
تعداد نویسندگان : عدد
كل مطالب : عدد
آخرین بازدید :
آخرین بروز رسانی :
قالب وبلاگ